Otoferlin
is a transmembrane protein consisting of six C2 domains,
proposed to act as a calcium sensor for exocytosis. Although otoferlin
is believed to bind calcium and lipids, the lipid specificity and
identity of the calcium binding domains are controversial. Further,
it is currently unclear whether the calcium binding affinity of otoferlin
quantitatively matches the maximal intracellular presynaptic calcium
concentrations of ∼30–50 μM known to elicit exocytosis.
To characterize the calcium and lipid binding properties of otoferlin,
we used isothermal titration calorimetry (ITC), liposome sedimentation
assays, and fluorescence spectroscopy. Analysis of ITC data indicates
that with the exception of the C2A domain, the C2 domains of otoferlin
bind multiple calcium ions with moderate (Kd = 25–95 μM) and low affinities (Kd = 400–700 μM) in solution. However, in the presence
of liposomes, the calcium sensitivity of the domains increased by
up to 10-fold. It was also determined that calcium enhanced liposome
binding for domains C2B–C2E, whereas the C2F domain bound liposomes
in a calcium-independent manner. Mutations that abrogate calcium binding
in C2F do not disrupt liposome binding, supporting the conclusion
that the interaction of the C2F domain with phosphatidylserine is
calcium-independent. Further, domains C2C and C2F, not domains C2A,
C2B, C2D, and C2E, bound phosphatidylinositol 4,5-bisphosphate 1,2-dioleoyl-sn-glycero-3-phospho(1′-myoinositol-4′,5′-bisphosphate) [PI(4,5)P2], which preferentially
steered them toward liposomes harboring PI(4,5)P2. Remarkably, lysine
mutations L478A and L480A in C2C selectively weaken the PI(4,5)P2
interaction while leaving phosphatidylserine binding unaffected. Finally,
shifts in the emission spectra of an environmentally sensitive fluorescent
unnatural amino acid indicate that the calcium binding loops of the
C2F domain directly interact with the lipid bilayer of negatively
charged liposomes in a calcium-independent manner. On the basis of
these results, we propose that the C2F and C2C domains of otoferlin
preferentially bind PI(4,5)P2 and that PI(4,5)P2 may serve to target
otoferlin to the presynapse in a calcium-independent manner. This
positioning would facilitate fast calcium-dependent exocytosis at
the hair cell synapse.