Low-temperature oxidation (LTO) of oil plays an important role in air-injection based oil recovery processes. Systematic investigations on the regularities of LTO reactions, especially those decoupled with the influences of mass transfer, were highly expected to improve field application and even to develop new strategies for heavy oil recovery. In this contribution, both thermogravimetry/differential scanning calorimeter and pressure differential scanning calorimeter were employed as microreactors to in situ monitoring the heat release and mass loss performances of the LTO process under different oxygen partial pressures. The total amount of heat resulted from LTO reactions of oil was observed in a linear relationship with oxygen partial pressure. A one-step reaction model was proposed to simulate the low-temperature mass loss behavior. The kinetic parameters were calculated based on the Arrhenius expression and the assumption of distributed activation energy. These results indicated the feasibility of in situ generated heat during low-temperature oxidation by the promotion of oxygen partial pressure and the contact between oil and oxygen with little loss of deposited oil.