According to the characteristics of the spectrum distribution for atmospheric aerosol detection, a multiband synthesis imaging spectrometer system based on Czerny–Turner configuration is designed and proposed in this paper. Using a grating array instead of a traditional single grating, and together with a filter array, the proposed configuration can achieve hyperspectral imaging with the spectral resolution of 0.16 nm, 0.24 nm, 0.29 nm, and 2.05 nm in the spectral bands of 370–430 nm, 640–680 nm, 840–880 nm, and 1560–1660 nm, respectively. First, the system aberration caused by the spectral change was eliminated based on Rowland circle theory; then, Zemax software was used to optimize and analyze the optical design. The analysis results show that the root mean square (RMS) of the spot diagram is < 9 µm in all the working spectral bands, which demonstrates that the aberration has been corrected and a good imaging quality can be achieved. This design of multiband synthesis imaging spectrometer configuration proves to be not only feasible, but also simple and compact, which lays a solid foundation for the practical application in the field of atmospheric aerosol remote sensing spectroscopy.