Menin functions as a critical oncogenic cofactor of mixed lineage leukemia (MLL) fusion proteins in the development of acute leukemias, and inhibition of the menin interaction with MLL fusion proteins represents a very promising strategy to reverse their oncogenic activity. MLL interacts with menin in a bivalent mode involving 2 N-terminal fragments of MLL. In the present study, we reveal the first high-resolution crystal structure of human menin in complex with a smallmolecule inhibitor of the menin-MLL interaction, MI-2. The structure shows that the compound binds to the MLL pocket in menin and mimics the key interactions of MLL with menin. Based on the menin-MI-2 structure, we developed MI-2-2, a compound that binds to menin with low nanomolar affinity (K d â«ŰâŹ
IntroductionTranslocations of the MLL (mixed lineage leukemia) gene frequently occur in aggressive human acute myeloid and lymphoid leukemias in both children and adults. 1 Fusion of MLL with 1 of more than 60 different genes results in chimeric MLL fusion proteins that enhance proliferation and block hematopoietic differentiation, ultimately leading to acute leukemia. 2 Patients with leukemias harboring MLL translocations have very unfavorable prognoses and respond poorly to currently available treatments. 2,3 The relapse risk is very high using conventional chemotherapy and stem cell transplantation, 2 leading to an overall 5-year survival rate of only approximately 35%. 4 All MLL fusion proteins preserve an N-terminal MLL fragment approximately 1400 amino acids in length fused in-frame with the C-terminus of the fusion partner. 3,[5][6][7] Two regions in this fragment of MLL have been shown to be indispensable for leukemogenic transformation: the N-terminal region, which binds to menin 8 and to lens epithelium-derived growth factor (LEDGF), 9 and the conserved region encompassing the CXXC domain, which mediates binding to nonmethylated CpG DNA [10][11][12] and interacts with the polymerase associated factor complex (PAFc). 13,14 Targeting these interactions provides new opportunities for the development of new therapeutic agents for the MLL leukemias. 15 Menin is a tumor-suppressor protein encoded by the MEN1 (multiple endocrine neoplasia 1) gene. 16 Mutations of MEN1 are associated with tumors of the parathyroid glands, pancreatic islet cells, and anterior pituitary gland. 17 Menin is also a highly specific binding partner for MLL and MLL fusion proteins and is required to regulate the expression of MLL target genes, including HOXA9 and MEIS1. 8 Loss of the ability to bind menin abolishes the oncogenic potential of MLL fusion proteins both in vitro and in vivo. 8 Disruption of the interaction between menin and MLL fusion proteins using genetic methods blocks the development of acute leukemia in mice, 8 indicating that menin functions as a critical oncogenic cofactor of MLL fusion proteins and is required for their leukemogenic activity. The menin-MLL interaction represents an attractive therapeutic target for the development of novel drugs for acut...