Pancreatic iron overload and diabetes mellitus (DM) are common in thalassemia major patients. However, the relationship between iron stores and glucose disturbances is not well defined. We used a frequently sampled oral glucose tolerance test (OGTT), coupled with mathematical modeling, and magnetic resonance imaging (MRI) to examine the impact of pancreatic, cardiac, and hepatic iron overload on glucose regulation in 59 patients with thalassemia major. According to OGTT results, 11 patients had DM, 12 had impaired glucose tolerance (IGT), 8 had isolated impaired fasting glucose (IFG), and 28 patients had normal glucose tolerance (NGT). Patients with DM had significantly impaired insulin sensitivity and insulin release. Insulin resistance was most strongly associated with markers of inflammation and somatic iron overload, while disposition index (DI) (a measure of beta cell function) was most strongly correlated with pancreas R2*. Patients with DM and IGT had significantly worse DI than those with NGT or IFG, suggesting significant beta cell toxicity. One-third of patients having elevated pancreas R2* had normal glucose regulation (preclinical iron burden), but these patients were younger and had lower hepatic iron burdens. Our study indicates that pancreatic iron is the strongest predictor of beta cell toxicity, but total body iron burden, age, and body habitus also influence glucose regulation. We also demonstrate that MRI and fasting glucose/insulin are complementary screening tools, reducing the need for oral glucose tolerance testing, and identify high-risk patients before irreversible pancreatic damage. Am. J. Hematol. 87:155-160, 2012. V