Ariadne-1 (Ari-1) is an essential E3 ubiquitinligase whose neuronal substrates are yet to be identified. We have used an in vivo ubiquitin biotinylation strategy coupled to quantitative proteomics to identify putative Ari-1 substrates in Drosophila heads. Sixteen candidates met the established criteria. Amongst those, we identified Comatose (Comt), the homologue of the Nethylmaleimide sensitive factor (NSF). Using an in vivo GFP pulldown approach, we validate Comt/NSF to be an ubiquitination substrate of Ari-1 in fly neurons. The interaction results in the monoubiquitination of Comt/NSF. We also report that Ari-1 loss of function mutants display a lower rate of spontaneous neurotransmitter release due to failures at the pre-synaptic side. By contrast, evoked release in Ari-1 mutants is enhanced in a Ca 2+ dependent manner without modifications in the number of active zones, indicating that the probability of release per synapse is increased in these mutants. The distinct Ari-1 mutant phenotypes in spontaneous versus evoked release indicate that NSF activity discriminates the two corresponding protein ensembles that mediate each mode of release. Our results, thus, provide a mechanism to regulate NSF activity in the synapse through Ari-1-dependent ubiquitination.Neurotransmitter release is mediated by a set of protein-protein interactions that include the Nethylmaleimide sensitive factor (NSF), soluble NSF attachment proteins (SNAPs) and SNAP receptors (SNAREs) (1). These proteins assemble into a tripartite complex in order to elicit synaptic vesicle fusion, which is formed by one synaptic vesicle membrane SNARE protein (v-SNARE), Synaptobrevin, and two plasma membrane SNARE proteins (t-SNAREs), Syntaxin and the 25-kDa synaptosome-associated protein (2). Following vesicle fusion, the tripartite SNARE complex disassembles by the activities of NSF and SNAPs. Free t-SNAREs from the plasma membrane can then participate in new priming reactions, while the v-SNAREs can be incorporated into recycled synaptic vesicles (3). These interactions, also routinely used for intracellular vesicle trafficking in all cell types, are conserved across species (4), including Drosophila (5).Deviations on the rate of neurotransmitter release are at the origin of multiple neural