The ability of parathyroid glandular extracts to stimulate bone acquisition in rodents was established in the 1920s, but interest in this action lay dormant for almost 50 years until application of contemporary laboratory methods permitted the large-scale production of an amino-terminal fragment of PTH, (1-34) hPTH (teriparatide), which was capable of carrying out all known actions of the full-length (1-84) PTH molecule. In the 1970s, largely stimulated by the efforts of a British pharmacologist, Dr. John Parsons, the scientific community began to revisit these anabolic actions and showed that single daily injections of teriparatide dramatically increased bone mass in several mammalian species and restored bone in oöphorectomized rats. Shortly thereafter, human studies confirmed a striking increase in trabecular bone mass and showed also that an important part of teriparatide's action is to increase cortical bone. Eli Lilly and Company conducted a formal registration trial in postmenopausal women with osteoporosis. The unexpected occurrence of osteosarcomas in Fisher 344 rats treated long-term with teriparatide provoked an abrupt cessation of that trial, but ambiguity concerning the relevance of this rat finding to human disease, combined with significant anti-fracture efficacy, led to FDA approval of teriparatide for men and postmenopausal women with osteoporosis "at high risk for fracture" in 2002. Subsequently, teriparatide has been approved also for treatment of patients with glucocorticoid-associated osteoporosis, and papers indicating utility of this agent for dental and orthopedic applications have begun to appear.