Four versions of the same global climate model, with horizontal resolution ranging from 1.88 3 3.68 to 0.28 3 0.48, are employed to evaluate the resolution dependence of the Southern Ocean meridional overturning circulation. At coarse resolutions North Atlantic Deep Water tends to upwell diabatically at low latitudes, so that the Southern Ocean is weakly coupled with the rest of the ocean. As resolution increases and eddy effects become less parameterized the interior circulation becomes more adiabatic and deep water increasingly upwells by flowing along isopycnals in the Southern Ocean, despite each model having the same vertical diffusivity profile. Separating the overturning circulation into mean and eddy-induced components demonstrates that both the permitted and the parameterized eddies induce overturning cells in the Southern Ocean with mass fluxes across mean isopycnals. It is found that for some density classes the transformation rate derived from surface buoyancy fluxes can provide a proxy for the net meridional transport in the upper Southern Ocean. Changes in the Southern Ocean overturning in response to poleward-intensifying Southern Hemisphere winds concomitant with increasing atmospheric CO 2 through the twenty-first century are also investigated. Results suggest that the circulation associated with the formation of Antarctic Intermediate Water is likely to strengthen, or stay essentially unchanged, rather than to slow down.