In humans, the asymmetry in the masseter electromyographic (EMG) activity during clenching is positively correlated with the degree of pupil size asymmetry (anisocoria) at rest. Anisocoria reveals an asymmetry in LC activity, which may lead to an imbalance in cortical excitability, detrimental to performance. Hereby, we investigated, in individual subjects, the possibility that occlusal correction, which decreases EMG asymmetry, improves performance by balancing LC activity. Cognitive performance, task-related mydriasis, and pupil size at rest were modified by changing the occlusal condition. Occlusal-related changes in performance and mydriasis were negatively correlated with anisocoria changes in only 12/20 subjects. Within this population, spontaneous fluctuations in mydriasis and anisocoria also appeared negatively coupled. Occlusal-related changes in performance and mydriasis were negatively correlated with those in average pupil size (a proxy of average LC activity) in 19/20 subjects. The strongest association was observed for the pupil changes occurring on the side with higher EMG activity during clenching. These findings indicate that the effects of occlusal conditions on cognitive performance were coupled to changes in the asymmetry of LC activity in about half of the subjects, while they were related to changes in the average tonic LC activity in virtually all of them.