Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Non-small cell lung cancer (NSCLC) represents one of the most prevalent forms of lung cancer, with a five-year survival rate of 21.7%. There is an urgent need to identify pertinent biomarkers to inform the diagnosis and prognosis of tumors, particularly those that can be applied to different age groups. Herein, we would apply machine learning methods to specifically analyze the issue of biomarker applicability across different age groups in NSCLC. Methods Studies have shown a higher incidence of NSCLC in people over 40 years of age, and due to the limitations of data set, studies of individuals under 40 years of age were not included in this study. To simulate the human aging model as closely as possible, we gathered corresponding non-small cell lung cancer (NSCLC) samples from the UCSC Xena database based on patient age information. These samples were then categorized into three groups: 40–60, 60–80, and over 80 years old. Subsequently, we employed four machine learning methods—Random Forest, LASSO regression analysis, XGBoost, and GBM—to identify gene sets with significant diagnostic value for each age group. By taking the intersection of these sets, we identified the optimal gene and assessed its prognostic significance in NSCLC. Then, the diagnostic value of CAT gene was validated using global public databases, including the GSE32863, GSE43458, GSE68571, GSE10072, and GSE63459 datasets from the Americas, the GSE30219 and GSE102511 datasets from Europe, and the GSE31210 and GSE19804 datasets from Asia. Furthermore, immunohistochemical staining was performed in an independent cohort from a tissue microarray. Additionally, cell culture and RT-qPCR were employed for external validation. Results Through the implementation of machine learning methods, we successfully identified the catalase (CAT) gene. Our analysis revealed that individuals with high expression of the CAT gene experienced improved survival rates. Additionally, these individuals exhibited elevated immune scores. We further discovered that the CAT gene synergizes with multiple components of neutrophils, including TLRs, FcRn, and the selective GEF of Rho-family GTPases. In addition, we identified a potential immune checkpoint, TNFSF15, which is applicable to the human aging model. Finally, we validated the CAT gene's diagnostic value using databases encompassing the Americas, Europe, and Asia regions. Through external RT-qPCR validation, we verified that CAT expression in BEAS-2B was higher than that of A549. In an independent human cohort, we also verified that CAT is lowly expressed in lung cancer tissues. In addition, higher CAT levels were associated with improved survival in the 40–60 and 60–80 age groups. Conclusions In our analysis of the NSCLC database, we pinpointed the CAT gene, which holds promise for potential diagnostic and prognostic applications in the context of human aging. Furthermore, it may offer insights into address...
Background Non-small cell lung cancer (NSCLC) represents one of the most prevalent forms of lung cancer, with a five-year survival rate of 21.7%. There is an urgent need to identify pertinent biomarkers to inform the diagnosis and prognosis of tumors, particularly those that can be applied to different age groups. Herein, we would apply machine learning methods to specifically analyze the issue of biomarker applicability across different age groups in NSCLC. Methods Studies have shown a higher incidence of NSCLC in people over 40 years of age, and due to the limitations of data set, studies of individuals under 40 years of age were not included in this study. To simulate the human aging model as closely as possible, we gathered corresponding non-small cell lung cancer (NSCLC) samples from the UCSC Xena database based on patient age information. These samples were then categorized into three groups: 40–60, 60–80, and over 80 years old. Subsequently, we employed four machine learning methods—Random Forest, LASSO regression analysis, XGBoost, and GBM—to identify gene sets with significant diagnostic value for each age group. By taking the intersection of these sets, we identified the optimal gene and assessed its prognostic significance in NSCLC. Then, the diagnostic value of CAT gene was validated using global public databases, including the GSE32863, GSE43458, GSE68571, GSE10072, and GSE63459 datasets from the Americas, the GSE30219 and GSE102511 datasets from Europe, and the GSE31210 and GSE19804 datasets from Asia. Furthermore, immunohistochemical staining was performed in an independent cohort from a tissue microarray. Additionally, cell culture and RT-qPCR were employed for external validation. Results Through the implementation of machine learning methods, we successfully identified the catalase (CAT) gene. Our analysis revealed that individuals with high expression of the CAT gene experienced improved survival rates. Additionally, these individuals exhibited elevated immune scores. We further discovered that the CAT gene synergizes with multiple components of neutrophils, including TLRs, FcRn, and the selective GEF of Rho-family GTPases. In addition, we identified a potential immune checkpoint, TNFSF15, which is applicable to the human aging model. Finally, we validated the CAT gene's diagnostic value using databases encompassing the Americas, Europe, and Asia regions. Through external RT-qPCR validation, we verified that CAT expression in BEAS-2B was higher than that of A549. In an independent human cohort, we also verified that CAT is lowly expressed in lung cancer tissues. In addition, higher CAT levels were associated with improved survival in the 40–60 and 60–80 age groups. Conclusions In our analysis of the NSCLC database, we pinpointed the CAT gene, which holds promise for potential diagnostic and prognostic applications in the context of human aging. Furthermore, it may offer insights into address...
Objective The objective of this study is to investigate the expression levels of non-receptor tyrosine kinase (SRC) genes in different types of human tumor tissues, and their relationship with patient prognosis and immune microenvironment. Methods We utilized the Sangerbox database to analyze the differential expression of SRC in various types of cancer tumors and adjacent normal tissues. Survival outcomes of SRC expression levels in pan cancer analyzed by Cox risk ratio and Kaplan Meier analysis. We further analyzed the relationship between SRC expression and immune examination genes, tumor mutation load, microsatellite instability, and the immune microenvironment of pan cancer through the Sangerbox database. Results Our findings indicate that the SRC gene is highly expressed in various tumors. Furthermore, the expression level of SRC is significantly correlated with the survival outcomes of various cancers, both positively and negatively. Additionally, the results of our analyses show that the expression level of SRC is associated with tumor mutation burden, microsatellite instability, and tumor infiltration of immune cells in various cancers. Conclusion SRC plays a critical role in the tumor microenvironment, and is involved in the tumorigenesis and tumor immunity of various cancers. Our study suggests that SRC might be a potential prognostic biomarker and a promising therapeutic target for various cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.