3D crystalline order with 1 nm resolution is observed in aqueous solutions of supramolecular nanotubes containing 94 % water, at concentrations as low as 6 wt%. 50 of star-like organic ions arrange into supramolecular rings which, in turn, stack on top of each other to form long hollow tubes with 15 nm outer diameter. Cryo-TEM and X-ray diffraction show that the parallel nanotubes arrange on a perfect hexagonal lattice. Unexpectedly, fiber diffraction on sheared solutions revealed numerous hkl Bragg reflections on several layer lines indicating longitudinal interlock between the tubes and 3D crystalline order with molecular-scale details transferred across 10 nm thick layers of water. The observed high 3D order is attributed to long-range attraction between like-charged tubes and amplified charge modulation by the extremely high intra-tube correlation length.