a b s t r a c tA hydroponic experiment was conducted in the present study to investigate and compare plant uptake, translocation and metabolism of polybrominated diphenyl ethers (PBDEs) of BDE-15, BDE-28 and BDE-47 and polychlorinated biphenyls (PCBs) of PCB-15, PCB-28 and PCB-47 in maize. Root concentrations of BDE-15, BDE-28 and BDE-47 were consistently higher than PCB-15, PCB-28 and PCB-47, respectively. A significantly positive correlation was found between log RCF (root concentration factor) and log K ow of these PBDEs and PCBs, suggesting a control role of their partitioning in plant uptake. The translocation factors (TFs, C stem /C root ) of PBDEs were generally lower than those of PCBs of the same halogen-substitutions, demonstrating easier transport of PCBs than PBDEs. Metabolites mono-, di-and tri-BDEs and PCBs were detected, suggesting the existence of in vivo metabolism of PBDEs and PCBs in maize. Dehalogenation and rearrangement of halogen atoms were identified, and some similarities but also significant differences existed between the PBDEs and PCBs. PBDEs in maize were, in general, more susceptible to metabolism compared with PCBs of the same halogen-substitutions. This is the first comparative report on the uptake, translocation and metabolism of PBDEs and PCBs in plants.