Background
Data are lacking to describe gene expression-based breast cancer intrinsic subtype patterns for population-based patient groups.
Methods
We studied a diverse cohort of women with breast cancer from the Life After Cancer Epidemiology (LACE) and Pathways studies. RNA was extracted from 1 mm punches from fixed tumor tissue. Quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) was conducted for the 50 genes that comprise the PAM50 intrinsic subtype classifier.
Results
In a subcohort of 1,319 women, the overall subtype distribution based on PAM50 was 53.1% Luminal A, 20.5% Luminal B, 13.0% HER2-enriched, 9.8% Basal-like, and 3.6% Normal-like. Among low-risk endocrine positive tumors (i.e. estrogen and progesterone receptor positive by immunohistochemistry, Her2 negative, and low histologic grade), only 76.5% were categorized as Luminal A by PAM50. Continuous-scale Luminal A, Luminal B, HER2-enriched, and Normal-like scores from PAM50 were mutually positively correlated; Basal-like score was inversely correlated with other subtypes. The proportion with non-Luminal A subtype decreased with older age at diagnosis, p trend < 0.0001. Compared with non-Hispanic whites, African-American women were more likely to have Basal-like tumors, age-adjusted odds ratio (OR) 4.4 (95% CI 2.3,8.4), whereas Asian and Pacific Islander women had reduced odds of Basal-like subtype, OR 0.5 (95% CI 0.3,0.9).
Conclusions
Our data indicate that over 50% of breast cancers treated in the community have Luminal A subtype. Gene expression-based classification shifted some tumors categorized as low risk by surrogate clinicopathological criteria to higher-risk subtypes.
Impact
Subtyping in a population-based cohort revealed distinct profiles by age and race.