The excess biomass of drifting algae and their casting to the Baltic Sea coast imposes a significant environmental burden. The analysis of beach-cast algae showed that the dominant species are macroalgae Ulva sp., Furcellaria lumbricalis, Cladophora sp., and Polysiphonia fucoides. The biomass of Furcellaria and Polysiphonia algae, containing 25.6% and 19.98% sugars, respectively, has the greatest resource potential in terms of obtaining carbohydrates. Fucose, glucose, and galactose were found to be the most common carbohydrates. The lipid content did not exceed 4.3% (2.3–4.3%), while the fatty acid composition was represented by saturated fatty acids (palmitic, stearic, methyloleic, behenic, etc.). The highest content of crude protein was found in samples of macroalgae of the genus Polysiphonia and amounted to 28.2%. A study of the elemental composition of drifting algae revealed that they have a high carbon content (31.3–37.5%) and a low hydrogen (4.96–5.82%), and sulfur (1.75–3.00%) content. Red algal biomass has the most resource potential in terms of biofuel generation, as it has a high number of lipids and proteins that can produce melanoidins during hydrothermal liquefaction, enhancing the fuel yield. The study noted the feasibility of using the biomass of the studied algae taxa to produce polysaccharides and biofuels. The analyses of antioxidant properties, fat content, and fat composition do not provide convincing evidence of the viability of using the aforementioned macroalgae for their production.