Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС). Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двухслоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек. Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта-Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике. Ключевые слова: клеточные автоматы с непрерывными значениями, гексагональная сетка, конечноразностные методы, уравнения в частных производных Работа была выполнена в рамках НИР «Исследование перспективных моделей вычислений и реализующих их архитектур высокопроизводительных информационно-вычислительных комплексов нового поколения» по Программе фундаментальных исследований ОНИТ РАН «Архитектурно-программные решения и обеспечение безопасности суперкомпьютерных информационно-вычислительных комплексов новых поколений» в ИППМ РАН.