these porosities as nanoporosity and microporosity, respectively. Although this terminology is loose, it is operationally useful because different techniques are used in the measurement of the differently sized pores, as discussed below. The International Union of Pure and Applied Chemistry (IUPAC) defi nes micropores as pores with width smaller than 2 nm, mesopores have pore widths of 2-50 nm, and macropores have widths larger than 50 nm (Sing et al. 1985; Rouquerol et al. 1994). METHODS FOR POROSITY AND PORE-SIZE DISTRIBUTION QUANTIFICATION Detailed analysis and characterization of natural pore systems requires a multitude of techniques that are capable of interrogating different aspects of the pore network across many orders of magnitude length scale. Some of the most widely used techniques include gas sorption, fl uid intrusion (including mercury porosimetry), various microscopy and image analysis approaches, and X-ray and neutron scattering. Sorption and intrusion techniques Gas sorption techniques, especially nitrogen sorption measurements at 77 K, are routinely used for the measurement of internal surface area and pore size in the region of 2-200 nm. Nitrogen gas sorption analysis (often referred to as BET analysis) of an intact sample yields the internal surface area and pore size distribution of accessible, connected pore spaces, while analysis of fi nely powdered samples yields the total porosity and surface area, plus the surface