“…However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is required, as stated by several authors [63,64,82,83], but such an approach is computationally demanding (vide infra) for polymetallic systems, notably for actinide ones, and usually simplified models are computed instead of the actual systems [63,64]. Thus, Density Functional Theory (DFT) appears as an alternative tool to compute magnetic exchange coupling and to explore the electronic structure and magnetic properties of actinide-containing molecules, especially when the considered systems are very large [6,8,21,37,60,79,80,84,85]. Indeed, DFT emerged in the early 2000s as a powerful technique, particularly when used in combination with the hybrid B3LYP functional [86,87] and the Broken-Symmetry (BS) Noodleman's approach [88,89], for satisfactory simulations of magnetic properties.…”