2024
DOI: 10.3389/frsip.2024.1321861
|View full text |Cite
|
Sign up to set email alerts
|

The performance of domain-based feature extraction on EEG, ECG, and fNIRS for Huntington’s disease diagnosis via shallow machine learning

Sucheer Maddury

Abstract: Introduction: The early detection of Huntington’s disease (HD) can substantially improve patient quality of life. Current HD diagnosis methods include complex biomarkers such as clinical and imaging factors; however, these methods have high time and resource demands.Methods: Quantitative biomedical signaling has the potential for exposing abnormalities in HD patients. In this project, we attempted to explore biomedical signaling for HD diagnosis in high detail. We used a dataset collected at a clinic with 27 H… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 51 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?