Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
An approach based on the use of a macromolecular coupling agent and the aim to improve the interfacial adhesion between piezoelectric ceramics and piezoelectric polymer matrix in piezoelectric composites is presented. Poly(methyl methacrylate) (PMMA) bearing a catechol moiety was used as a macromolecular coupling agent, as it is known to be miscible to piezoelectric fluoropolymers and catechol groups can strongly bind to a large variety of surfaces. Thus, entanglement between the PMMA chains and the amorphous segments of the fluoropolymer would ensure the desired interfacial adhesion. Well-defined PMMA was synthesized via RAFT polymerization using 2-cyano-2-propyl dodecyl trithiocarbonate as a chaintransfer agent. The PMMA ω-chain end was then functionalized with a catechol group via a one-pot aminolysis/thia-Michael addition procedure using a dopamine acrylamide (DA) derivative as a Michael acceptor. The presence of the catechol moiety at the chain end of PMMA was controlled by 1 H NMR and cyclic voltammetry measurements. The resulting PMMA-DA was then grafted onto the surface of a lead-free piezoelectric ceramic film (i.e., a thin film of H 2 O 2 -activated (Bi 0.5 Na 0.5 )TiO 3 (BNT) with a large contact area). The increase of the water contact angle confirmed the efficiency of the grafting. A commercial piezoelectric copolymer P(VDF-co-TrFE) was then spin-coated onto the modified BNT surface to form a bilayer composite. The composite cross section prepared by cryofracture was examined by scanning electron microscopy and revealed that the ceramic/polymer interface of the BNT-PMMA/P(VDF-co-TrFE) bilayer composite exhibits a much better cohesion than its counterpart composite prepared from nonmodified BNT. Moreover, the grazing incidence wide-angle X-ray scattering confirmed that the copolymer crystal structure was not impacted by the presence of the PMMA-DA coupling agent. A strong piezoelectric response was locally detected by piezoresponse force microscopy. This study highlights the potential of PMMA-DA as a macromolecular coupling agent to improve the ceramic/polymer interface in piezoelectric composite materials.
An approach based on the use of a macromolecular coupling agent and the aim to improve the interfacial adhesion between piezoelectric ceramics and piezoelectric polymer matrix in piezoelectric composites is presented. Poly(methyl methacrylate) (PMMA) bearing a catechol moiety was used as a macromolecular coupling agent, as it is known to be miscible to piezoelectric fluoropolymers and catechol groups can strongly bind to a large variety of surfaces. Thus, entanglement between the PMMA chains and the amorphous segments of the fluoropolymer would ensure the desired interfacial adhesion. Well-defined PMMA was synthesized via RAFT polymerization using 2-cyano-2-propyl dodecyl trithiocarbonate as a chaintransfer agent. The PMMA ω-chain end was then functionalized with a catechol group via a one-pot aminolysis/thia-Michael addition procedure using a dopamine acrylamide (DA) derivative as a Michael acceptor. The presence of the catechol moiety at the chain end of PMMA was controlled by 1 H NMR and cyclic voltammetry measurements. The resulting PMMA-DA was then grafted onto the surface of a lead-free piezoelectric ceramic film (i.e., a thin film of H 2 O 2 -activated (Bi 0.5 Na 0.5 )TiO 3 (BNT) with a large contact area). The increase of the water contact angle confirmed the efficiency of the grafting. A commercial piezoelectric copolymer P(VDF-co-TrFE) was then spin-coated onto the modified BNT surface to form a bilayer composite. The composite cross section prepared by cryofracture was examined by scanning electron microscopy and revealed that the ceramic/polymer interface of the BNT-PMMA/P(VDF-co-TrFE) bilayer composite exhibits a much better cohesion than its counterpart composite prepared from nonmodified BNT. Moreover, the grazing incidence wide-angle X-ray scattering confirmed that the copolymer crystal structure was not impacted by the presence of the PMMA-DA coupling agent. A strong piezoelectric response was locally detected by piezoresponse force microscopy. This study highlights the potential of PMMA-DA as a macromolecular coupling agent to improve the ceramic/polymer interface in piezoelectric composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.