This paper investigates free transverse vibrations of finite Euler–Bernoulli beams resting on viscoelastic Pasternak foundations. The differential quadrature methods (DQ) are applied directly to the governing equations of the free vibrations. Under the simple supported boundary condition, the natural frequencies of the transverse vibrations are calculated, and compared with the results of the complex mode analysis method. The numerical results obtained by using the DQ and the complex mode methods are in good agreement for the first seven order natural frequencies, but with the growth of the orders, the small quantitative differences between them increase. The effects of the foundation parameters on the natural frequencies are also studied in numerical examples.