Neo-myometrium was created by culturing isolated myocytes into decellularized rat and human myometrial scaffolds. The dual purpose of the uterus is to accommodate the growing fetus, and then expel the fetus at term by phasically contracting it. The first function requires physical robustness as well as the ability to expand and remodel. Congenital anomalies or previous surgeries can mechanically compromise the uterus and lead to major complications in pregnancy. The second function utilizes multiple interactions of complex physiological mechanisms that have yet to be fully elucidated, and this knowledge gap contributes to the continuation of serious complications of pregnancy. To address both problems, we reconstructed myometrium from isolated myocytes and scaffold. From both rat and human myometrium, myocytes were isolated using collagenase digestion, and scaffolds were isolated using ethanol/ trypsin protocols. The number of myocytes was amplified using monolayer culture, and then, the myocytes were cultured back into the scaffolds. We called this engineered tissue neo-myometrium, with allo-neo-myometrium being made from components of the same species, and xeno-neo-myometrium from across species. By artificially creating defects in rat scaffold, alloneo-myometrium was created that demonstrated rapid scaffold remodeling. Xeno-neo myometrium (human myocytes/rat scaffold) was created and demonstrated myocytes occurring in bundles 500 mm deep in the scaffold. These experiments provide proof of principle that modest numbers of myocytes can be amplified and used to create a larger volume of engineered tissue, which may be useful for semi-autologous transplantation to repair structural defects of the human uterus. In isometric contractility experiments, coordinated contractions were observed in xeno-neo-myometrium (human myocytes, rat scaffold), but not allo-neo-myometrium (human myocytes, human scaffold).