JAK2 genetic variants are associated with inflammatory bowel disease (IBD) and JAK inhibitors are being evaluated for therapy targeting immune-mediated diseases, including IBD. As JAK pathway-mediated cytokine regulation varies across cell types and stimulation conditions, we examined how JAK signaling and IBD-associated JAK2 variants regulate distinct acute and chronic microbial product exposure outcomes in human myeloid cells, consistent with the conditions of initial entry and ongoing intestinal tissue residence, respectively. Macrophages from controls and ulcerative colitis patients carrying the IBD-risk rs10758669 CC genotype showed increased JAK2 expression and NOD2-induced JAK2 phosphorylation relative to AA carriers. Interestingly, the threshold of JAK2 expression and signaling determined pattern-recognition receptor (PRR)-induced outcomes; while anti-inflammatory cytokines progressively decreased with lower JAK2 expression, pro-inflammatory cytokines switched from decreased to increased secretion below a certain JAK2 expression threshold. Low JAK2-expressing rs10758669 AA macrophages were above this threshold; consequently, both PRR-induced pro- and anti-inflammatory cytokines were decreased. However, relative to rs10758669 CC risk-carriers, AA carrier macrophages switched to increased NOD2-induced pro-inflammatory cytokines at lower therapeutically-used JAK inhibitor doses. Importantly, JAK inhibitors increased pro-inflammatory cytokines secreted by peripheral macrophages following chronic PRR stimulation and by human intestinal myeloid cells following exposure to intestinal pathogens. Mechanistically, the decreased response to and secretion of autocrine/paracrine IL-10, IL-4, IL-22 and thymic stromal lymphopoietin regulated these JAK-dependent outcomes in myeloid cells. Taken together, JAK signaling threshold determines whether PRR-induced pro- and anti-inflammatory cytokines are reciprocally regulated in myeloid cells; consideration of JAK2 genotype and targeting of specific cell types might improve JAK-targeted therapy in immune-mediated diseases.