1986
DOI: 10.2307/3680093
|View full text |Cite
|
Sign up to set email alerts
|

The Phase Vocoder: A Tutorial

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
86
0
2

Year Published

1994
1994
2017
2017

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 164 publications
(88 citation statements)
references
References 10 publications
0
86
0
2
Order By: Relevance
“…As modificações temporais se referem à contração ou dilatação da duração do som de entrada e as modificações frequenciais se referem à transposição do espectro inicial para regiões mais agudas ou mais graves (MOORER, 1978. DOLSON, 1986.…”
Section: O Phase Vocoder E Seu Modelo Source-filterunclassified
“…As modificações temporais se referem à contração ou dilatação da duração do som de entrada e as modificações frequenciais se referem à transposição do espectro inicial para regiões mais agudas ou mais graves (MOORER, 1978. DOLSON, 1986.…”
Section: O Phase Vocoder E Seu Modelo Source-filterunclassified
“…This result is true even for high quality techniques developed in the speech context such as the phase vocoder [5] and sine-wave analysis/synthesis [6,7]. Loss of temporal resolution results from windowing the signal during analysis and dispersing the phase during synthesis.…”
Section: Introductionmentioning
confidence: 99%
“…Each filter output ykf(n) is complex [each filter response hk(n) in Equation (1) is complex] so that the temporal envelope of the output of the kth channel is ak(n) = Iyk(n)I , (5) and the phase of each bandpass output is…”
Section: Subband Representationmentioning
confidence: 99%
See 1 more Smart Citation
“…(1) If the frequency sampling is dense enough and g has support inside an interval I, with the length ≤ n b , then S is a diagonal matrix. (2) If the time sampling is dense enough andĝ has compact support on an interval with length ≤ n a , thenŜ is diagonal and therefore S is circulant. In both cases it is easy to find the inverse matrix [12].…”
mentioning
confidence: 99%