The nature of spin current and the separation of charge current and spin current are two of the fundamental questions in spintronics. For this purpose the classical limit of the Maxwell-Dirac theory is investigated in the present contribution. Since the Dirac equation reduces to the Weyl equation for massless particles, a vortex solution is obtained for the Weyl equation and it is argued that mass has stochastic origin. The Weyl vortex is embedded in a Gaussian wavepacket to define physical vortex. Two-vortex internal structure of electron is developed in terms of Weyl and subquantum Weyl vortices characterized by h and f = e 2 /2πc respectively. It is suggested that this model may find application in spintronics with a new perspective.