We synthesized four compounds with indole and benzooxazine fragments fused in their molecular skeleton and differing in the substituent in the para position, relative to the oxygen atom, of their phenoxy chromophore. This particular substituent extends the conjugation of the phenoxy chromophore and shifts its absorption bathochromically by up to 60 nm, relative to a parent compound with a 4-nitrophenoxy group. The 1,3-oxazine ring of all compounds opens upon addition of base to generate a hemiaminal incorporating a phenolate chromophore. Once again, the substituents on this fragment shift its absorption bathochromically by up to 60 nm, relative to the parent compound. Upon laser excitation at a wavelength within the absorption range of the phenoxy chromophore, the 1,3-oxazine ring of the compound incorporating a 4-nitrophenyl substituent opens in less than 6 ns to generate a zwitterionic isomer with a quantum yield of 0.11 in acetonitrile. Under these conditions, the photogenerated isomer has