Benzene exhibits a rich photochemistry
which can provide access
to complex molecular scaffolds that are difficult to access with reactions
in the electronic ground state. While benzene is aromatic in its ground
state, it is antiaromatic in its lowest ππ* excited
states. Herein, we clarify to what extent relief of excited-state
antiaromaticity (ESAA) triggers a fundamental benzene photoreaction:
the photoinitiated nucleophilic addition of solvent to benzene in
acidic media leading to substituted bicyclo[3.1.0]hex-2-enes. The
reaction scope was probed experimentally, and it was found that silyl-substituted
benzenes provide the most rapid access to bicyclo[3.1.0]hexene derivatives,
formed as single isomers with three stereogenic centers in yields
up to 75% in one step. Two major mechanism hypotheses, both involving
ESAA relief, were explored through quantum chemical calculations and
experiments. The first mechanism involves protonation of excited-state
benzene and subsequent rearrangement to bicyclo[3.1.0]hexenium cation,
trapped by a nucleophile, while the second involves photorearrangement
of benzene to benzvalene followed by protonation and nucleophilic
addition. Our studies reveal that the second mechanism is operative.
We also clarify that similar ESAA relief leads to puckering of S
1
-state silabenzene and pyridinium ion, where the photorearrangement
of the latter is of established synthetic utility. Finally, we identified
causes for the limitations of the reaction, information that should
be valuable in explorations of similar photoreactions. Taken together,
we reveal how the ESAA in benzene and 6π-electron heterocycles
trigger photochemical distortions that provide access to complex three-dimensional
molecular scaffolds from simple reactants.