Introduction: The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has evolved into a worldwide outbreak, with significant molecular evolution over time. Large-scale phylodynamic studies allow to map the virus spread and inform preventive strategies. Aim: This study investigates the extent of binational dispersal and dynamics of SARS-CoV-2 lineages between seven border provinces of the adjacent countries of Poland and Germany to reconstruct SARS-CoV-2 transmission networks. Methods: Following three pandemic waves from March 2020 to the end of May 2021, we analysed a dataset of 19,994 sequences divided into B.1.1.7|Alpha and non-Alpha lineage groups. We performed phylogeographic analyses using the discrete diffusion models to identify the pathways of virus spread. Results: Based on population dynamics inferences, in total, 673 lineage introductions (95% HPD interval 641–712) for non-Alpha and 618 (95% HPD interval 599–639) for B.1.1.7|Alpha were identified in the area. For non-Alpha lineages, 5.05% binational, 86.63% exclusively German, and 8.32% Polish clusters were found, with a higher frequency of international clustering observed for B.1.1.7|Alpha (13.11% for binational, 68.44% German and 18.45% Polish, p < 0.001). We identified key transmission hubs for the analysed lineages, namely Saxony, West Pomerania and Lower Silesia. Conclusions: Clustering patterns between Poland and Germany reflect the viral variant transmission dynamics at the international level in the borderline area. Tracing the spread of the virus between two adjacent large European countries may provide a basis for future intervention policies in cross-border cooperation efforts against the spread of the pandemics.