The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path.