Understanding global patterns of genetic diversity (GD) is essential to describe, monitor, and preserve the processes giving rise to life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrate groups that comprise a small fraction of Earth's biodiversity. Here, we construct the first global map of predicted insect genetic diversity. We calculate the global distribution of GD mean (GDM) and evenness (GDE) of insect assemblages, identify the global environmental correlates of insect GD, and make predictions for undersampled regions. Based on the largest and most species-rich single-locus genetic dataset assembled to date, we find that both GD metrics follow a bimodal latitudinal gradient, where GDM and GDE correlate with contemporary climate variation. Our models explain 1/4 and 1/3 of the observed variation in GDM and GDE in insects, respectively, making an important step towards describing global biodiversity patterns in the most diverse animal taxon.