the aqueous phase and the air bubble (Gaudin, 1957). It is accepted that the higher the contact angle of a mineral surface, the more readily it is wetted by air, and is thus more hydrophobic (Lucassen-Reynders and Lucassen, 1984;Gaudin, 1957). Particle hydrophobicity or contact angle is dependent on the type and distribution of species present on the mineral surface (Crawford et al., 1987). Generally, the mineral particle surface may be covered with hydrophobic (e.g. collector, polysulphide) and hydrophilic species (oxide, hydroxide, and sulphate) as well as with different mineral phases, as found in composite particles (Prestidge and Ralston, 1995). Recovery decreases with increasing particle size because of detachment and decreases at small particle sizes due to inefficient collision (Dai et al., 2000).The flotation behaviour of quartz particles was studied over the particle size range from 0.5 µm to 1000 µm and for advancing water contact angles between 0º and 83º. Flotation was performed in a column and in a Rushton turbine cell. Particle contact angle threshold values, below which the particles could not be floated, were identified for the particle size range 0.5-1000 µm, under different hydrodynamic conditions. The flotation response of the particles, either in a column or in a mechanically agitated cell with a similar bubble size, was comparable. Turbulence plays a role, as does bubble-particle aggregate velocity and bubble size. The stability of the bubble-particle aggregate controls the maximum floatable particle size of coarse particles. For fine particles, the flotation limit is dictated by the energy required to rupture the intervening liquid film between the particle and bubble. Flotation of very fine and large particles is facilitated with small bubbles and high contact angles. These results greatly extend our earlier observations and theoretical predictions.On a étudié le comportement de flottation de particules de quartz pour des tailles de particules comprises entre 0,5 µm et 1000 µm et des angles de contact de l'eau de 0º et 83º. La flottation a été réalisée dans une colonne et dans une cellule munie d'une turbine Rushton. Les valeurs de seuils des angles de contact, en dessous desquels les particules ne pouvaient pas flotter, ont été identifiées pour une gamme de particules de 0,5-1000 µm, dans différentes conditions hydrodynamiques. La réponse de flottation, dans une colonne ou dans une cellule agitée mécaniquement avec une taille de bulles similaire, est comparable. La turbulence exerce une influence, tout comme la vitesse des agrégats de bulles et de particules et la taille des bulles. La flottation des particules très fines et des particules larges est facilitée avec des bulles petites et des angles de contact élevés. Ces résultats élargissent de façon importante nos observations et prédictions théoriques antérieures.