Functionalized and environmentally friendly ionic liquids are required in many fields, but convenient methods for measuring their polarity are lacking. Two novel ether-functionalized amino acid ionic liquids, 1-(2-methoxyethyl)-3-methylimidazolium alanine ([C1OC2mim][Ala]) and 1-(2-ethoxyethyl)-3-methylimidazolium alanine ([C2OC2mim][Ala]), were synthesized by a neutralization method and their structures confirmed by NMR spectroscopy. Density, surface tension, and refractive index were determined using the standard addition method. The strength of intermolecular interactions within these ionic liquids was examined in terms of standard entropy, lattice energy, and association enthalpy. A new polarity scale, PN, is now proposed, which divides polarity into two compartments: the surface and the body of the liquid. Surface tension is predicted via an improved Lorentz-Lorenz equation, and molar surface entropy is used to determine the polarity of the surface. This new PN scale is based on easily measured physicochemical parameters, is validated against alternative polarity scales, and is applicable to both ionic and molecular liquids.