Background: Despite increased awareness of climate change and urban air pollution, little research has been performed to examine the influence of meteorology and air quality on athletic performance of the general public and recreational exercisers. Anecdotal evidence of increased temperatures and wind speeds as well as higher relative humidity conditions resulting in reduced athletic performance has been presented in the past, whilst urban air pollution can have negative short- and long-term impacts on health. Furthermore, pollutants such as Ozone, Nitrogen Dioxide and Particulate Matter can cause respiratory and cardiovascular distress, which can be heightened during physical activity. Previous research has examined these impacts on marathon runners, or have been performed in laboratory settings. Instead, this paper focuses on the potential impacts on the general public. With the rise of parkrun events (timed 5 km runs) across the UK and worldwide concerns regarding public health in relation to both air quality and activity levels, the potential influence of air quality and meteorology on what is viewed as a ‘healthy’ activity has been investigated. A weekly dataset of parkrun participants at fifteen events, located in London UK, from 2011-2016 alongside local meteorological and air quality data has been analysed.Results[JH(G+ESLF1] : The biggest influencer on athletic performance is meteorology, particularly temperature and wind speed. Regression results between parkrun finishing times and temperature predominantly show positive relationships, supporting previous laboratory tests (p=0[JH(G+ESLF2] .01). Increased relative humidity also can be associated with slower finishing times but in several cases is not statistically significant. Higher wind speeds can also be related to slower times (p=<0.01) and in contrast to temperature and relative humidity, male participants are more influenced than female by this variable. Although air quality does influence athletic performance to an extent, the heterogeneity of pollutants within London and between parkrun events and monitoring sites makes this difficult to prove decisively.Conclusions: It has been determined that temperature and relative humidity can have the largest detrimental impact on parkrun performance, with ozone also being detrimental in some instances[JH(G+ESLF3] . The influence of other variables cannot be discounted however and it is recommended that modelling is performed to further determine the extent to which ‘at event’ meteorology and air quality has on performance. In the future, there results can be used to determine safe operating and exercise conditions for parkrun and other public athletics events.Key Points· Temperature and relative humidity have the largest detrimental impact on parkrun participants in the Greater London area.· Air quality impacts are less clear but it is shown that ozone, as an irritant to the cardiorespiratory system, can lead to slower times.· Modelling ‘at event’ air quality is recommended to improve data resolution and influence on participants.