Glaciers are shrinking due to global warming, resulting in a diminishing contribution of ice and snowmelt to headwaters and subsequent consequences to freshwater ecosystems. Within this context, we tested whether water-stable isotopes are spatio-temporal tracers of (i) water in high altitude periglacial environments, being the isotopic signature of surface water inherited from the snow/icemelt, groundwater, and rainfall; and (ii) regional (year-specific) meteorological conditions, being the isotopic signature of precipitations affected by air temperature, humidity and aqueous vapour origin, ascribing stable isotopes to the list of "essential climate variables" (ECVs). To this end, we investigated the ionic and isotopic composition (δ 18 O and δ 2 H) of six high-altitude streams and one pond in the Italian Alps (Noce and Sarca basins) during the ablation season in 2018. Differences between habitat types (pond, kryal, rhithral, krenal) were detected. More negative values of δ 18 O and δ 2 H were recorded in the kryal and glacio-rhithral sites, dominated by ice and snowmelt, in early summer. Less negative values were recorded in these sites in late summer, as well as in the krenal sites, which were dominated by groundwater and rainfall inputs. The isotopic results also show that the complex alpine orography influences air masses and moisture, ultimately resulting in isotopic differences in the precipitations of neighboring but distinct catchments (Sarca and Noce basins). On average, less negative values were recorded in the Sarca basin, characterized by a higher contribution of precipitation of Mediterranean origin. In general, isotopic results of the entire water population appeared to be strongly influenced by the regional climatic anomaly of 2018, which was anomalously warm. Therefore, the study will provide additional information for the climate change debate, proposing water isotopes as ECVs for assessing change in a warmer future.Water 2020, 12, 390 2 of 18 future, mean annual runoff is expected to progressively decrease in glacier-fed streams, and overall changes in the hydrological behavior of small-and large-scale catchments are expected [9,10].Glacier shrinking and its consequences on glacier-fed streams induce variation in the physical, chemical and biological features of freshwater ecosystems [11,12]. This profoundly affects the ecosystem services that glacier-fed rivers provide to humans, particularly the provision of water for agriculture, hydropower, and consumption [11,13,14]. This is crucial for mountain settlements in glacialized regions, where the snow and ice melt contribution, especially in spring and summer, is the most relevant water source for several uses [13][14][15]. In particular, streams draining in Alpine areas are generally identified as some of the environments most sensitive to climate change [16,17]. This is particularly true for glacier-fed streams and rivers [18]. Within this scenario, runoff changes also impact on the biological community structure [13,19]. In fact, alpine stream...