The Poincaré–Andronov–Hopf bifurcation theory and its application to nonlinear analysis of RC phase‐shift oscillator
Zhivko D. Georgiev,
Ivan M. Uzunov,
Todor G. Todorov
et al.
Abstract:SummaryIn the paper, a nonlinear analysis of RC phase‐shift oscillator with operational amplifier is done. Using Kirchhoff's laws, a nonlinear system of three differential equations that describes the behavior of the oscillator is obtained. This system is analyzed using the Poincaré–Andronov–Hopf bifurcation theory. The basic principles of the Poincaré–Andronov–Hopf bifurcation theory are presented in advance, including the Center Manifold Theory and the Theory of Normal Forms. It was found that, under certain… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.