V2O5-WO3/TiO2 as a commercial selective catalytic reduction (SCR) catalyst usually used at middle-high temperatures was modified by loading of MnOx for the purpose of enhancing its performance at lower temperatures. Manganese oxides were loaded onto V-W/Ti monolith by the methods of impregnation (I), precipitation (P), and in-situ growth (S), respectively. SCR activity of each modified catalyst was investigated at temperatures in the range of 100–340 °C. Catalysts were characterized by specific surface area and pore size determination (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), etc. Results show that the loading of MnOx remarkably enhanced the SCR activity at a temperature lower than 280 °C. The catalyst prepared by the in-situ growth method was found to be most active for SCR.