In nature, the wavy ocean surface is a common polarizer, which can change the polarization state of incident light by refraction and reflection and form a new polarization pattern different from the atmosphere. In this paper, we establish the polarized optical transmission model of wavy ocean surface reflection and refraction and simulate polarization patterns induced by wavy ocean surfaces. We study the polarization patterns reflected by wavy water surfaces and polarization patterns inside and outside Snell’s window under wavy ocean surfaces. The correctness of the simulation results is verified by qualitative and quantitative analysis. The environmental factors affecting the corresponding polarization patterns are discussed. Through contrastive analysis, we find that polarization patterns induced by wavy water surfaces are predictable and regular, which has great potential for human application. This kind of polarization pattern is influenced by the sun’s position and water surface condition. The study will promote the development of remote sensing, target detection, and polarization navigation.