International Zurich Seminar on Digital Communications, Electronic Circuits and Systems for Communications.
DOI: 10.1109/digcom.1990.129366
|View full text |Cite
|
Sign up to set email alerts
|

The policing function in an ATM network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(3 citation statements)
references
References 3 publications
0
2
0
1
Order By: Relevance
“…Se requiere de un conocimiento bastante bueno del comportamiento y de las estadísticas que lo soportan [17], [18]. Parámetros como velocidad de bit pico, velocidad de bit promedio y longitud de la ráfaga (explicada como la duración de la velocidad de bit pico), son parámetros usados para caracterizar el trafico multimedia [18], [19]. Modelos matemáticos como Cadenas de Markov de tiempo continuo (CTMC), procesos modulados semi-markov (SMMP), y procesos de poisson modulados Markov (MMPP) [20] son usados para caracterizar y modelar el trafico.…”
Section: Voz En Redes Atm a Traves De Re-des Neuronales (Nn)unclassified
“…Se requiere de un conocimiento bastante bueno del comportamiento y de las estadísticas que lo soportan [17], [18]. Parámetros como velocidad de bit pico, velocidad de bit promedio y longitud de la ráfaga (explicada como la duración de la velocidad de bit pico), son parámetros usados para caracterizar el trafico multimedia [18], [19]. Modelos matemáticos como Cadenas de Markov de tiempo continuo (CTMC), procesos modulados semi-markov (SMMP), y procesos de poisson modulados Markov (MMPP) [20] son usados para caracterizar y modelar el trafico.…”
Section: Voz En Redes Atm a Traves De Re-des Neuronales (Nn)unclassified
“…The proposed congestion control algorithm consists of a critic part and a NN controller part as shown in figure (2). The system to be controlled (the environment) is composed of the input traffic sources and the input multiplexer buffer at the access node t o the network (UNI).…”
Section: Reinforcement Learning Methodsmentioning
confidence: 99%
“…A major shortcoming of the currently available queuing models [2], [3] is that only steady-state results are tractable and consequently, any control algorithm tailored on the basis of such models can ensure optimal performance only under steady-state conditions. However, performance control methods that dynamically regulate traffic flows according t o changing network conditions require understanding of its dynamics, which is almost impossible in ATM networks.…”
Section: Introductionmentioning
confidence: 99%