The existing work deals with the evaluation of compact loop heat pipe by means of a low thermal conductivity sintered chrysotile wick to avoid large heat leaks as of the evaporator to the compensation chamber. Accordingly, a wick with low thermal conductivity (0.068–0.098 W/mK) chrysotile powder of a mean particle diameter of 3.4 μm is fabricated through sintering. Nine chrysotile wicks are sintered with different compositions of binders (bentonite and dextrin) and pore‐forming agent NaCl at sintering temperatures of 500°C, 600°C, and 700°C with a sintering time of 30 min. The wick properties, for instance, porosity, permeability, wettability, and capillary rise are studied owing to sintering temperature. Consequently, it is observed that a pure chrysotile powdered wick at a sintering temperature of 600°C exhibits a high porosity of 61.8% with permeability 1.04 × 10−13 m2 and a capillary rise of 4.5 cm in 30 s and is considered optimal. This optimal wick is used for performance evaluation in compact loop heat pipe and a decrease of 36.1% in thermal resistance is found when compared with copper mesh wick in a loop heat pipe. The lowermost thermal resistance originates to be 0.147 K/W at 120 W with wall temperature 57.7°C. This indicates that loop heat pipe with sintered chrysotile wick can operate at lower heat loads efficiently when compared with copper mesh wick and as heat load increases a chance of dry out condition occurs. The highest evaporative heat transfer coefficient obtained is 65.7 kW/m2 K at a minimum heat load.