Approximate images of the earth's subsurface structures are usually obtained by migrating surface seismic data. Leastsquares migration, under the single-scattering assumption, is used as an iterative linearized inversion scheme to suppress migration artifacts, deconvolve the source signature, mitigate the acquisition fingerprint, and enhance the spatial resolution of migrated images. The problem with least-squares migration of primaries, however, is that it may not be able to enhance events that are mainly illuminated by internal multiples, such as vertical and nearly vertical faults or salt flanks. To alleviate this problem, we adopted a linearized inversion framework to migrate internally scattered energy. We apply the least-squares migration of firstorder internal multiples to image subsurface vertical fault planes. Tests on synthetic data demonstrated the ability of the proposed method to resolve vertical fault planes, which are poorly illuminated by the least-squares migration of primaries only. The proposed scheme is robust in the presence of white Gaussian observational noise and in the case of imaging the fault planes using inaccurate migration velocities. Our results suggested that the proposed least-squares imaging, under the double-scattering assumption, still retrieved the vertical fault planes when imaging the scattered data despite a slight defocusing of these events due to the presence of noise or velocity errors.