2020
DOI: 10.1007/s12517-020-5134-1
|View full text |Cite
|
Sign up to set email alerts
|

The possibility of preparing soil texture class map by artificial neural networks, inverse distance weighting, and geostatistical methods in Gavoshan dam basin, Kurdistan Province, Iran

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
3
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 21 publications
1
3
0
3
Order By: Relevance
“…The use of ML models has become increasingly prevalent for predicting the spatial distribution of soil properties. When predicting soil PSFs, various ML-based DSM studies have included the use of artificial neural networks (ANNs) [17][18][19][20][21], boosted regression tree (BRT) [19,22,23], Random Forest (RF) [18,24], and artificial neuro-fuzzy inference system (ANFIS) [16,25]. Despite the variety of ML models that a DSM practitioner may apply, existing literature does not seem to suggest that one model is universally better than others; furthermore, model comparison studies have shown that different models have the potential to generate drastically different outputs when given the same input data [26].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The use of ML models has become increasingly prevalent for predicting the spatial distribution of soil properties. When predicting soil PSFs, various ML-based DSM studies have included the use of artificial neural networks (ANNs) [17][18][19][20][21], boosted regression tree (BRT) [19,22,23], Random Forest (RF) [18,24], and artificial neuro-fuzzy inference system (ANFIS) [16,25]. Despite the variety of ML models that a DSM practitioner may apply, existing literature does not seem to suggest that one model is universally better than others; furthermore, model comparison studies have shown that different models have the potential to generate drastically different outputs when given the same input data [26].…”
Section: Introductionmentioning
confidence: 99%
“…When predicting PSFs, however, ANNs have been shown to be particularly effective, and they are the most widespread approach due to their accuracy and flexibility [17][18][19][20][21]. However, this model has several considerable shortcomings, such as inconsistent architectures for different applications, coupled with the process required to tune and fit a neural network, which is a time-consuming procedure that is largely based on trial and error [27,28].…”
Section: Introductionmentioning
confidence: 99%
“…Visualmente, os mapas apresentaram padrões que diferenciaram relativamente pouco entre si, e permitiram a identificação de regiões com diferentes frações texturais. Tem-se a expectativa de que o solo nas porções central e direita mapeada apresente maior retenção hídrica e baixa condutividade hidráulica devido à maior fração argila, enquanto que aquela à esquerda possua maior capacidade de drenagem hídrica em virtude da característica arenosa (JOZEFACIUK et al, 2020;KHANBABAKHANI;TORKASHVAND;MAHMOODI, 2020;LI;WAN;SHANG, 2020;WANG et al, 2020).…”
Section: Krigagemunclassified
“…A análise granulométrica do solo permite interpretações texturais, relacionadas ao tamanho de partículas, identificando a fração fina constituída por areia (diâmetros entre 0,02 mm e 2 mm), silte (diâmetros entre 0,002 e 0,02 mm) e argila (diâmetros menores que 0,002 mm). Informações das frações de argila, silte e areia auxiliam a classificação de solos e a realização de inferências sobre a Capacidade de Trocadora de Cátions (CTC), drenagem, curva de retenção de água, fertilidade, resistência ao cisalhamento, porosidade, teor de Matéria Orgânica (MO) e outras métricas do solo (CENTENO et al, 2017;ABU-HAMDEH et al, 2019;BEVINGTON et al, 2019;SHAHRIARI et al, 2019;UYANIK et al, 2019;JOZEFACIUK et al, 2020;KHANBABAKHANI;TORKASHVAND;MAHMOODI, 2020;LI;WAN;SHANG, 2020;WANG et al, 2020). Solos mais argilosos tendem a exibir maiores valores de CTC, capacidade de retenção de umidade, microporosidade e MO.…”
Section: Introductionunclassified
See 1 more Smart Citation