2017
DOI: 10.1016/j.rser.2016.05.090
|View full text |Cite
|
Sign up to set email alerts
|

The potential for energy efficiency in the EU Member States – A comparison of studies

Abstract: In October 2014, the European Council agreed on a target of improving overall energy efficiency by at least 27 per cent by 2030. According to the European Council's conclusions, this target should not be translated into nationally binding targets. Nevertheless individual Member States are free to set higher national objectives if desired. However, it is difficult to assess the degree of ambition of a national target because so far not much light has been shed upon the exact size of the untapped efficiency pote… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
17
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
9
1

Relationship

1
9

Authors

Journals

citations
Cited by 29 publications
(17 citation statements)
references
References 15 publications
0
17
0
Order By: Relevance
“…Other papers on the efficient waste management regard the definition of a primary energy return index, used for comparing different municipal solid waste management scenarios [49]; the coupling of renewable energy source in a wastewater treatment plant consisted of conventional activated sludge systems [50]; and a novel methodology applied to evaluate urban wastewater treatment plants in terms of energy efficiency [51,52]. This topic was dealt with comprehensively in previous SDEWES SIs focusing on different aspects, namely: the influence of urban form on the performance of road pavement solar collector system [53]; the energy management in a smart municipal energy grid including combined heat and power plants, solar photovoltaic and wind technologies [54]; the analysis of the future energy scenarios on the Danish municipality of Helsingør to obtain a cost-optimal combination between individual heating, district heating and heat savings [55]; a study on the management of dust to ensure that urban environment and industry can coexist in a sustainable and beneficial manner [56]; the adoption, in urban water distribution systems, of energy storage systems to meet the water demand [57]; the evaluation of carbon emissions in highly polluted European cities [58]; the replacement of bituminous roofs as green roofs to make cities more 'future proof' and resilient [59]; the integration of the renewable energy resources to enhance the regional energy efficiency and sustainability [60]; and many other papers concerning the analysis of energy efficiency targets of the member countries of the EU [61][62][63].…”
Section: Topic Methodology Main Outcomesmentioning
confidence: 99%
“…Other papers on the efficient waste management regard the definition of a primary energy return index, used for comparing different municipal solid waste management scenarios [49]; the coupling of renewable energy source in a wastewater treatment plant consisted of conventional activated sludge systems [50]; and a novel methodology applied to evaluate urban wastewater treatment plants in terms of energy efficiency [51,52]. This topic was dealt with comprehensively in previous SDEWES SIs focusing on different aspects, namely: the influence of urban form on the performance of road pavement solar collector system [53]; the energy management in a smart municipal energy grid including combined heat and power plants, solar photovoltaic and wind technologies [54]; the analysis of the future energy scenarios on the Danish municipality of Helsingør to obtain a cost-optimal combination between individual heating, district heating and heat savings [55]; a study on the management of dust to ensure that urban environment and industry can coexist in a sustainable and beneficial manner [56]; the adoption, in urban water distribution systems, of energy storage systems to meet the water demand [57]; the evaluation of carbon emissions in highly polluted European cities [58]; the replacement of bituminous roofs as green roofs to make cities more 'future proof' and resilient [59]; the integration of the renewable energy resources to enhance the regional energy efficiency and sustainability [60]; and many other papers concerning the analysis of energy efficiency targets of the member countries of the EU [61][62][63].…”
Section: Topic Methodology Main Outcomesmentioning
confidence: 99%
“…Energy intensity improvements are typically a decisive factor in mitigation scenarios [35]. As final energy intensity improvements can be the result of technical energy efficiency improvements, changes in consumption as well as structural effects [36,37], the following three strategies are identified that can lead to energy intensity improvements:…”
Section: Methodsmentioning
confidence: 99%
“…Knoop analyzed the energy efficiency targets for the EU [23]. In 2014, the EU planned a minimum 27% energy efficiency improvement by 2030.…”
Section: Referencementioning
confidence: 99%