“…The algorithm then learns the mapping function from the input data to the corresponding output variables. Common supervised classification techniques for hyperspectral data include linear discriminant analysis (LDA) (Arafat, Aboelghar, & Ahmed, 2013; Carvalho, van der Putten, & Hol, 2016), support vector machines (SVM) (Axelsson et al., 2013; Xiaming et al., 2015), partial least squares‐discriminant analysis (PLS‐DA) (Liu et al., 2014; Matzrafi et al., 2017), and artificial neural networks (ANNs) (Goel et al., 2003; Yi, Huang, Wang, & Liu, 2007). Unsupervised techniques are less common than supervised techniques but include k ‐means clustering (Behmann et al., 2014; Bergsträsser et al., 2015) and PCA (Kalacska, Bohlman, Sanchez‐Azofeifa, Castro‐Esau, & Caelli, 2007; Liu et al., 2014).…”