Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background In Tanzania, firewood, charcoal, and agricultural waste play a crucial role in daily life as sources of cooking energy, especially in rural areas. Using these energy sources contributes to deforestation and the emission of harmful substances, leading to health problems. This study highlights the potential of faecal sludge briquettes as an innovative, environmentally friendly, and sustainable alternative to traditional energy sources to meet the increasing demand for cooking energy in Tanzania. The process involved sludge characterization, drying, sorting, carbonization, milling, briquette making, and characterization. Results A study was conducted to assess the presence of zinc (Zn), cadmium (Cd), and lead (Pb) in faecal sludge collected from households. The results indicates that the levels of these metals were all within the acceptable limits set by the Tanzanian Standards (TZS) for sludge disposal and use in the environment, which are 5.00 mg/L, 5.00 mg/L, and 30.00 mg/L, respectively. Septic tanks and pit latrines sludge had a concentration of 0.5 mg/L and 0.5 mg/L for Zn, 0.55 mg/L, and 0.6 mg/L for Cd, and 10.01 mg/L and 4.87 mg/L for Pb, respectively. Adding 75% charcoal dust improved the gross and net heating values from 10.47 and 10.16 to 19.29 and 18.86 MJ/kg, respectively. Similarly, adding 50% charcoal dust improved the gross and net heating values to 19.24 and 18.78 MJ/kg. The emission of particulate matter (micrograms/m3) was reduced from 30.4 and 35 to 10.3 and 11.8 for PM2.5 and 7 and 8 for PM10, while carbon monoxide emission decreased from 51.2 to 19.7 ppm. Conclusion The results strongly suggest that briquettes made of carbonized faecal sludge mixed with other biomass materials could offer an alternative to traditional solid fuels, with the added benefits of reducing greenhouse gas emissions, deforestation, and longer burning times.
Background In Tanzania, firewood, charcoal, and agricultural waste play a crucial role in daily life as sources of cooking energy, especially in rural areas. Using these energy sources contributes to deforestation and the emission of harmful substances, leading to health problems. This study highlights the potential of faecal sludge briquettes as an innovative, environmentally friendly, and sustainable alternative to traditional energy sources to meet the increasing demand for cooking energy in Tanzania. The process involved sludge characterization, drying, sorting, carbonization, milling, briquette making, and characterization. Results A study was conducted to assess the presence of zinc (Zn), cadmium (Cd), and lead (Pb) in faecal sludge collected from households. The results indicates that the levels of these metals were all within the acceptable limits set by the Tanzanian Standards (TZS) for sludge disposal and use in the environment, which are 5.00 mg/L, 5.00 mg/L, and 30.00 mg/L, respectively. Septic tanks and pit latrines sludge had a concentration of 0.5 mg/L and 0.5 mg/L for Zn, 0.55 mg/L, and 0.6 mg/L for Cd, and 10.01 mg/L and 4.87 mg/L for Pb, respectively. Adding 75% charcoal dust improved the gross and net heating values from 10.47 and 10.16 to 19.29 and 18.86 MJ/kg, respectively. Similarly, adding 50% charcoal dust improved the gross and net heating values to 19.24 and 18.78 MJ/kg. The emission of particulate matter (micrograms/m3) was reduced from 30.4 and 35 to 10.3 and 11.8 for PM2.5 and 7 and 8 for PM10, while carbon monoxide emission decreased from 51.2 to 19.7 ppm. Conclusion The results strongly suggest that briquettes made of carbonized faecal sludge mixed with other biomass materials could offer an alternative to traditional solid fuels, with the added benefits of reducing greenhouse gas emissions, deforestation, and longer burning times.
The production–consumption cycle needs a transition towards a circular economy where waste valorization is included. This study investigated briquetting as a stabilization method for black soldier fly frass (BSFF) with faecal matter, pig manure, and poultry manure as the larvae feed. Herein, dried BSFF was pyrolyzed at 350 °C for 2 h to produce biochar then mixed with charcoal dust in equal ratio to produce biobriquettes through densification, with cassava gel (10 wt%) as binder. One-way ANOVA showed statistical significance in carbon, nitrogen, hydrogen, and oxygen. There were significant differences (p < 0.05) between the calorific value, moisture content, ash content, volatile matter, and fixed carbon of the briquettes. The fixed carbon, volatile matter, moisture, and ash content ranged from 29.66 ± 0.86 to 42.01 ± 0.92, 29.26 ± 0.52 to 32.59 ± 0.80, 2.95 ± 0.1 to 5.08 ± 0.04, and 21.48 ± 0.14 to 37.20 ± 0.29, respectively. The calorific value of the produced briquettes ranged from 16.25 ± 0.57 to 20.70 ± 0.53 MJ/kg, which exceeds the minimum requirement of 14.5 MJ/kg recommended for non-woody briquettes. During combustion, concentrations of NOx, N2O, CO, and CO2 varied significantly across the treatments with the acacia charcoal having the highest concentration of CO. Briquetting is a potential stabilization method for frass resulting in waste reduction, bioenergy production, reduced adverse effects of climate change, and enhanced sustainability.
IntroductionThe valorization of agricultural waste from indigenous sub-Saharan African food processes remains underexplored. By-products from the processing of Parkia biglobosa seeds into condiments are often regarded as pollutants. This research assessed their potential for development in various industrial applications.Materials and methodsThis study employed a standardized protocol adopted in the processing of P. biglobosa seed into condiments, enabling the quantification of food and by-products generated as a percentage. A comparative analysis of the proximate and mineral constituents of the dried food condiment and seed coat (testa) was conducted. Furthermore, the phytochemical constituent of effluents from the two stages of processing was characterized using qualitative and quantitative methods, including Fourier-transform infrared spectroscopy (FTIR) and gas chromatography–mass spectrometry (GC–MS).Results and discussionThe results showed that 66.27% of each 100 g processed P. biglobosa seed used could be considered waste, with 23.19% in seed coat and 29.47% in effluent(s). The seed coat has moisture absorption potential and is fibrous in nature, as confirmed by proximate fiber analysis—15.03 ± 0.13% compared to 9.07 ± 0.10% in the dried condiment. Both the condiments and seed coat contained considerable amounts of sustenance minerals. Effluents from the boiling process exhibited a characteristic starchy effect on textiles. The concentrated effluent from the first stage of boiling had a chocolate-like aroma, sticky texture, and dark-brown color compared to the effluent from the second boiling stage. The FTIR analysis indicated the presence of alcohols, alkenes, aromatic rings, carboxylic acids, and amines in the effluent samples. GCMS characterization reported the presence of specific fatty acids with known health benefits. When premised on the waste-to-wealth initiative, the quantified and characterized by-products of P. biglobosa seed processing, as reported in this study, have potential applications across various industrial processes, including food, cosmetics, pharmaceutical, and agriculture, among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.