A new, chiral bis-Ti(IV) oxide of type 3 has been designed and can be utilized for strong activation of aldehyde carbonyls, thereby allowing a new catalytic enantioselective allylation of aldehydes with allyltributyltin. The chiral bis-Ti(IV) catalyst (S,S)-3 can be readily prepared either by treatment of bis(triisopropoxy)titanium oxide with (S)-BINOL or by treatment of ((S)-binaphthoxy)isopropoxytitanium chloride with silver(I) oxide. Treatment of hydrocinnamaldehyde with allyltributyltin under the influence of chiral bis-Ti(IV) oxide (S,S)-3 generated in situ (10 mol %) in CH(2)Cl(2) afforded an allylation product in 84 % yield and with 99 % ee. This asymmetric allylation with non-racemic bis-Ti(IV) oxide 3 and partially resolved (S)-BINOL shows a positive nonlinear effect in correlation of the enantiopurity of the allylation product with the ee of the (S)-BINOL. Chiral bis-Ti(IV) oxide (S,S)-3 can also be utilized for related reactions such as asymmetric methallylation and propargylation of aldehydes with high enantioselectivity. This asymmetric approach provides a very useful way of obtaining high reactivity and selectivity through the simple introduction of the M-O-M unit into the design of chiral Lewis acid catalysts.