Nanostructured energetic materials can fit with advanced energetic first-fire, and electric bridges (microchips). Manganese oxide, with active surface sites (negatively charged surface oxygen, and hydroxyl groups) can experience superior catalytic activity. Manganese oxide could boost decomposition enthalpy, ignitability, and propagation rate. Furthermore manganese oxide could induce vigorous thermite reaction with aluminium particles. Hot solid or liquid particles are desirable for first-fire compositions. This study reports on the facile fabrication of MnO2 nanoparticles of 10 nm average particle size; aluminium nanoplates of 100 nm average particle size were employed. Nitrocellulose (NC) was adopted as energetic polymeric binder. MnO2/Al particles were integrated into NC matrix via co-precipitation technique. Nanothermite particles offered an increase in NC decomposition enthalpy by 150 % using DSC; ignition temperature was decreased by 8 0C. Nanothemrite particles offered enhanced propagation index by 261 %. Kinetic study demonstrated that nanothermite particles experienced drastic decrease in NC activation energy by - 42, and - 40 KJ mol-1 using Kissinger and KAS models respectively. This study shaded the light on novel nanostructured energetic composition, with superior combustion enthalpy, propagation rate, and activation energy.