SUMMARY: Intravascular sonography is a valuable tool for the morphologic assessment of coronary atherosclerosis and the effect of pharmacologic and nonpharmacologic interventions on the progression or stabilization of atherosclerosis. An analysis of the different modes, applications, and limitations is provided on the basis of review of existing data from multiple clinical case studies, trials, and mechanistic studies. Intravascular sonography has been used to assess the outcomes of different percutaneous interventions, including angioplasty and stent implantation, and to provide detailed characterization of atherosclerotic lesions, aneurysms, and dissections within the cerebrovascular circulation. Evolution of intravascular sonographic technology has led to the development of more sophisticated diagnostic tools such as color-flow, virtual histology, and integrated backscatter intravascular sonography. The technologic advancement in intravascular sonography has the potential of providing more accurate information prior, during, and after a medical or endovascular intervention. Continued assessment of this diagnostic technique in both the intracranial and extracranial circulation will lead to increased use in clinical practice with the intent to improve outcomes.ABBREVIATIONS: CI ϭ confidence interval; EEL ϭ external elastic lamina; O.D. ϭ outer diameter C urrently there are 3 types of sonography used to assess the extracranial and the intracranial circulation: 1) transcranial Doppler, 2) B-mode sonography, and 3) intravascular sonography (Table). The morphologic appearance of the intra-arterial and intravenous circulation can now be visualized by using intravascular sonography, which has become a commonly used diagnostic technique for randomized clinical trials assessing coronary plaque progression and regression. With excellent resolution, intravascular sonography provides cross-sectional images of both the arterial wall and lumen and identifies intimal flaps and irregularities, and the composition and extent of the atherosclerotic plaque.2-6 Evolution of the intravascular sonography technology has led to the development of more sophisticated diagnostic tools such as colorflow, virtual histology, and integrated backscatter intravascular sonography. 7 The successful application of conventional (gray-scale) intravascular sonography in the coronary arteries has led to its application within the extracranial and intracranial arteries. Recently, intravascular sonography has also been used to identify and characterize carotid artery aneurysm, dissection, and thrombus. 8 Intravascular sonography has been used successfully to assist in making measurements before and after percutaneous transluminal balloon angioplasty and stent placement, with emphasis on the identification of stent underexpansion, poor apposition, subacute stent thrombosis, and plaque protrusion.9,10 Real-time dynamic intravascular sonography of the cervical common carotid artery and internal carotid artery can detect defects that are not readily appar...