Purpose
This study aims to embed anatase, rutile and brookite TiO2 nanoparticles (NPs) with different crystal phases into cotton fabrics by epoxy silane and to examine the effect of these applications on the photocatalytic and mechanical properties of the fabric.
Design/methodology/approach
Different aqueous dispersions which contain anatase, rutile and brookite were prepared at three different concentrations (5%, 10% and 15%). These NPs were embedded in cotton fabrics by using GPTS [(3-glycidyloxypropyl) trimethoxysilane]. Characterization tests were performed by scanning electron microscopy (SEM), Raman and Fourier-transform infrared spectroscopy (FT/IR). Samples were stained with methylene blue (MB) and then exposed to solar light for different periods. Color changes of the samples were examined with a spectrophotometer. Air permeability, abrasion and tear strength tests were applied to all samples.
Findings
According to SEM images, the NPs were successfully attached to the cotton fabrics, and epoxy silane coating surrounded the fiber surfaces. The presence of the coating was also confirmed by Raman spectroscopy and FT/IR. The treatments reduced the stainability of the samples. The most effective applications for ensuring photocatalytic activity in cotton fabrics were suspensions as 10% brookite, 10% anatase and 5% anatase, in descending order. The applied coating slightly reduced the samples’ air permeability, and wear and tear strength.
Originality/value
The importance of this study is to determine the optimal crystal phase and its concentration by using epoxy silane to ensure self-cleaning properties on cotton fabrics. The sample treated with 10% brookite is the most approached its original white color by 99.65% as a result of degradation of MB (after 120 min). On the other hand, using the pure rutile with epoxy silane was not suitable for removing MB from the fabric.