2020
DOI: 10.3846/transport.2020.14016
|View full text |Cite
|
Sign up to set email alerts
|

The Prediction of Parking Space Availability

Abstract: Intelligent Parking Systems (IPS) allow customers to select a car park according to their preferences, rapidly park their vehicle without searching for the available parking space (place) or even book their place in advance avoiding queues. IPS provides the possibility to reduce the wastage of fuel (energy) while finding a parking place and consequently reduce harmful emissions. Some systems interact with in-vehicle navigation systems and provide users with information in real-time such as free places availabl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…In the proposed model, the data is tested on various machine learning algorithms to test the accuracy of the prediction service. In [13], a non-homogeneous Markov chain model was used to predict the parking space availability. It is reasonable to state that the model accurately captures how the parking lot is used with the highest MAPE (mean absolute percentage error) of 17.3%, despite the fact that the model data is only based on the week's traffic survey.…”
Section: Related Workmentioning
confidence: 99%
“…In the proposed model, the data is tested on various machine learning algorithms to test the accuracy of the prediction service. In [13], a non-homogeneous Markov chain model was used to predict the parking space availability. It is reasonable to state that the model accurately captures how the parking lot is used with the highest MAPE (mean absolute percentage error) of 17.3%, despite the fact that the model data is only based on the week's traffic survey.…”
Section: Related Workmentioning
confidence: 99%