The emission of x-ray satellite lines in the Kα region of Mg, Si, Sc, Ti, Cr, Fe, Ni, and Zn induced by electron incidence was studied by means of wavelength dispersive spectroscopy. The satellite lines studied were Kα , Kα 3 , Kα 4 , Kα 5 , Kα 6 , and two transitions denoted here as Kα 22 and Kα 12 . Energy shifts with respect to the main Kα 1 diagram line and transition probabilities relative to the whole Kα group were determined for a number of lines through a careful spectral processing. The dependence of these parameters, as well as of the Kβ:Kα intensity ratio, on the atomic number was compared with previous experimental and theoretical determinations when available. A discussion about the different mechanisms responsible for vacancy creation involved in the production of double-ionization satellites was performed in the light of the results obtained. Finally, the behavior of the satellite intensities as a function of the incidence energy was discussed for silicon.