Background: There is presently insufficient data on small groups of patients, without focus on time since herniation occurred and without establishing a valid method of measurement for signal intensity (SI) of a lumbar disc herniation (LDH) in a standard magnetic resonance imaging (MRI). SI could be reported in relation to SI of nucleus pulposus of herniated intervertebral disc, nucleus pulposus of a healthy ''control'' intervertebral disc, cerebral spinal fluid, or anterior anulus fibrosus. It is not known which signal intensity ratio (SIR) shows the highest correlation with time since onset of pain and how SIR of different Combined Task Forces (CTF)-types of herniation develop over time. Methods: Out of 1053 patients, we enrolled 151 patients to a retrospective single-center analysis of standard MRIs of consecutive patients treated for LDH from February 2008 to December 2017 with confirmed (surgery, injection, or electrophysiologic testing) radicular pain by LDH and known exact date of onset of pain. We excluded patients , 18 or. 70 years, with chronical pain syndrome, spinal deformity, and history of prior spinal surgery on the affected spinal level. Because data did not show normal distribution, we assessed correlation by Spearman rank correlation coefficient. Correlation (R) and coefficient of correlation (CC) are reported. Results: SI of LDH referenced by SI of nucleus pulposus of the affected intervertebral disc and CTF type ''extrusion'' showed the highest correlations with time since onset of pain (R: À0.893; CC: 79.7), followed by CTF-type ''sequestration'' (R: À0.356; CC: 12.7). Conclusions: SIR of extrusion referenced by nucleus pulposus of the affected intervertebral disc does show a high correlation with days since onset of herniation and may be applied to monitor changes of SI of LDH after herniation in standard MRIs of the lumbar spine.